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Abstract 

The main purpose of this paper is to present Hermite-Chebyshev polynomials 
and to give some properties of Hermite and Chebyshev polynomials. We derive 
operational identities, generating functions, and integral representation for 
power series satisfied by Hermite, Chebyshev, and Hermite-Chebyshev 
polynomials. Furthermore, for these Hermite-Chebyshev polynomials, we give 
operational rules with operators, often exploited in the theory of exponential 
operators. Finally, some definitions of Hermite-Chebyshev polynomials also of 
two, three and in turn several index are derived and new families of 
polynomials. 

1. Introduction and Preliminaries 

Special functions appear in statistics, Lie group theory, and number 
theory. The Hermite polynomials of the associated generating functions 
is reformulated within the framework of an operational formalism              
[4, 5, 6, 7, 10, 12]. In the case of generalized special functions, the use of 
operational techniques, combined with the principle of monomiality       
[2, 3, 9] has provided new means of analysis for the derivation of the 
solution of large classes of partial differential equations often 
encountered in physical problems [11], offers a powerful tool to treat the 
relevant generating functions and the differential equations they satisfy. 
The results are interpreted in terms of single, several variables, single 
index, index two, three and in turn p-index in terms of Hermite 
polynomials defined by Srivastava [14, 15]. The reason of interest for this 
family of Hermite polynomials is due to their intrinsic mathematical 
importance and to the fact that these polynomials have applications in 
physics. 

In this paper, Hermite-Chebyshev polynomials are introduced and 
studied. We calculate summations, integral representation, and derive 
raising operators for Hermite-Chebyshev polynomials and of its 
generalization to the Hermite-Chebyshev polynomials. Before entering 
into more technical details, we will introduce some identities that will be 
largely exploited in this work. Finally, the end in this paper of an 
attempt of unify several results in the theory of polynomials, also in 
Hermite polynomials of one or more variables, author has defined the 
multi-index Hermite-Chebyshev polynomials. 
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The Crofton operational rule defined by [8] 
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The Burchnall identity is defined by [1] 
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The n-th Hermite polynomials are defined by the following the 
generating function: 
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and the explicit form 
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where  a  is the standard floor function which maps a real number a to 

its next smallest integer. According to [13], the Hermite polynomials 
satisfy the generating function 

( ) ( )
( ) (

( )
).

21
4;;2

1,221! 2

2
02

0 xt
tFxtn

txH n
nn

n −

−−+αα−=
α α−

∞

=
∑  (1.5) 

The ( )xHn  is defined through the operational identity 
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and the inverse of (1.6) allows us to conclude that 
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The Hermite polynomials have simple and useful representations in 
terms of definite integrals containing the variable x as parameter 
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The Chebyshev polynomials are defined by 
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which are specified by the generating function 
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2. On Hermite and Chebyshev Polynomials 

This section gives some properties of Hermite and Chebyshev 
polynomials. We start with the following theorem: 
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Proof. Let us consider 
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On the other hand, from (1.3), we get 

( ) ( )[ ] ( )
k

k
kk












=−=− ∑

∞

=

xHn
ttxttxt n
n

n
!2exp2exp

0

22  

( ) ( ) ( )
.!!! 210

21

21

nnnn

nnnnn
tnnn

xHxHxH











= ∑∑

=+++

∞

= k

k

k
…
…

…
 (2.3) 

Combining (2.2) and (2.3) gives (2.1).   

Theorem 2.2. For ,N∈k  
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Proof. Let ( ) ( )( ).2exp,,,, 2
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On the other hand, we get 
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By combining (2.5) and (2.6), one gets (2.4).  
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Theorem 2.3. For any positive integer ,k  
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Proof. Using the power series of ( ) ,21 2 k−+− txt  and making the 

necessary arrangements gives 
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In addition to this, we can write 
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By (2.8) and (2.9), the Equation (2.7) follows directly.   

3. Hermite-Chebyshev Polynomials 

In this section, we can define the Hermite-Chebyshev polynomials by 
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It is clear that 
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In view of (3.1), we consider the series 
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By using (1.5) and (3.2), we obtain a generating function for Hermite-
Chebyshev polynomials in the form 
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Moreover, another generating function for Hermite-Chebyshev 
polynomials is given in the form 
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The following theorem presents a representation for the Hermite-
Chebyshev polynomials and reduces to the operational rule. 

Theorem 3.1. The Hermite-Chebyshev polynomials satisfy the 
following representation: 
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Proof. From (3.1) and (1.6), one gets 
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It is worth noting that, for ,2
xx =  the expressions (3.5) and (3.6) give 

another representation for the Hermite-Chebyshev polynomials in the 
form 
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Now, we can see that the integral form of Hermite-Chebyshev 
polynomials with on their properties and prove the following: 
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Theorem 3.2. The Hermite-Chebyshev polynomials satisfy the 
following relations: 
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Proof. By using (1.8) and (3.1), the integral form (3.7) follows 
directly.   

Now, we are devoted to operational identities to the theory of 
exponential operators, may significantly simplify the study of Hermite-
Chebyshev generating functions and the discovery of new relations. 
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By multiplying the left-hand side of (3.9) by nt  with using (1.10), we find 
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allows us to write (3.8) as 
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We can therefore use the decoupling rule of the exponential is defined by 
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which holds in the hypothesis that the operators Â  and B̂  satisfy the 
commutation brackets 
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The second example to illustrate the usefulness of the above procedure. 
According to (3.6), we can write 
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We now decompose the exponential operator on the right-hand side of 
Equation (3.15) by means of the following operational rule: 
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4. Generalized Hermite-Chebyshev Polynomials 

Here, we consider the generalized Hermite-Chebyshev polynomials 
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Using (1.5) and (4.2), we obtain an explicit representation for the 
generating function of Hermite-Chebyshev polynomials in the form 
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Finally, the above relations will be used, along with the generalized 
Hermite-Chebyshev polynomials can be shown to satisfy the property, to 
derive new properties of the family generated function by (4.3) yields as 
given in the following paper. It goes by itself that we can introduce the 
Hermite-Chebyshev polynomials 
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and 
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The Hermite-Chebyshev polynomials of two, three index and in turn        
p-index in terms of series are represented as follows: 
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Further examples proving the usefulness of the present method can be 
easily worked out, but are not reported here for conciseness. Further 
applications will be discussed in a forthcoming paper. 

5. Concluding Remark 

One can use the same class of integral representation and operational 
methods for some other polynomials of several variables. Hence, new 
results and further applications can be obtained. 
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